A Roadmap on the Low Power Static Random Access Memory Design Topologies

Jyoti Yadav, Toshiyanka Goswami, P.Bhatnagar, S. Birla and Neeraj Kr. Shukla

Abstract— The increasing demand for more and novel applications in electronics systems have persuaded the semiconductor technology towards scaling of devices to accommodate a large number of circuit component in a single Integrated Circuit. Thus high density and faster chips have become semiconductor industry's requirement. But faster circuits need more power to work properly and hence reduces the battery lifetime. This paper provides a systematic overview of Static Random Access Memory based on semiconductor technology (45,65,130 and180 nm), Bit-Cell type (1T,2T,3T upto 14T), various circuit design techniques (power gating, dual Vth, body biasing, MTCMOS, Sub threshold, etc.) for ultra low power applications, eg. Bio-medical, Wireless sensors, Multimedia applications. Recent trends of shrinking the semiconductor devices into nanometer regime lowers the operating power requirements. This lower operating voltage(Vdd) starts offering other challenges such as speed, stability. It is seen that if speed is increased then power also increases. If access time is decreased, the noise margins also increases. If Vmin is reduced then reliability improves.

_____ **♦** _____

Index Terms— Bio-Medical, multimedia, 3-D graphics, wireless sensors

1 INTRODUCTION

SRAM has advantage over DRAM because of its high speed, faster access time, low power dissipation and it doesn't require being refreshed again and again. SRAM is mostly used for cache memory, the memory used on processors and hard drives to store frequently used data and instructions. SRAM is used in a lot of devices where speed is more crucial than capacity. Because of its application in high speed communications and 3-D Graphics systems there is large demand for high speed embedded memories [12]. Battery lifetime specifications drives a great impact on the power consumption requirements of integrated circuits in bio- implantable, wearable, and portable medical devices [32]. Stand by power is a major problem in low power applications. The amount of circuitry on a chip as well as circuitry speed have continued to increase exponentially since the invention of integrated chips. The scaling of CMOS technology has brought several challenges for SRAM designers to meet market demands [37]. To reduce standby leakage following techniques can be used: i To increase threshold voltage NMOS and PMOS are reverse body biased ii To reduce the effective Vdd across the SRAM cell , bias the source (Vs) of the SRAM cell NMOS latch above ground iii In standby mode to turn off the circuits use sleep transistors [42]. Various low power methodologies are used e.g. Self reverse bias technique, Multiple Vth technique, Multi threshold-Voltage CMOS (MTCMOS), Multiple body bias, Dual threshold CMOS, Dynamic Vth technique etc. Subthreshold logics are also becoming renouned for ultra-low power applications like portable electronics, medical instruments, and sensor networks where minimum power consumption is the main requirement [45]. Various multi voltages schemes are proposed with increased process corners complexity. Depending on the targeted application constraint tradeoffs like power, area, performance and stability are prioritized. The highly power constrained systems require more power for its active mode operations [55]. To achieve high speed, low voltage and smaller area semiconductor circuits and systems are implemented into nano metre regime [67].

2 LOW-POWER SRAM BIT-CELL TOPOLOGIES

This section presents various SRAM Bit-Cell topologies reported so far by various researchers in the domain of semiconductor SRAM design. Here, the bit-cell topologies have been organized in respect with the number of transistors in the SRAM cell and technology. A lot of good work is available in the literature these days. This was a big challenge before us to what to include and what to not. Though we have tried, but the inclusion of all the research paper is not possible in one survey, we have focused on low-power SRAM bit-cell topologies and technologies. Various low power methodologies are used e.g. Self reverse bias technique, Multiple Vth technique, Multi threshold-Voltage CMOS (MTCMOS), Multiple body bias, Dual threshold CMOS, Dynamic Vth technique etc.

TABLE 1: THE 1T SRAM BIT-CELL TOPOLOGY

IABLE I: IHE II S			LUGI			1	1	n	
Author & Title	Technology (nm)	Power (µW)	Area (mm²)	Freq (MHz)	Vdd (V)	Methodology	Trade offs	Achievements	Comments
Moselund K.E., Bouvet D., Pott V., Meinen C., Kayal M., and Ionescu A.M., "Punch- through impact ionization MOSFET (PI- MOS): From de- vice principle to applications,"[1]	TCAD	-	-	-	-	punch- through im- pact ioniza- tion MOSFET	High Current Consumption	High temperature stability, less switching activity	Hysteresis width can be optimized by the value of Vds.
Leung Wingyu, Hsu Fu-Chieh, and Jones Mark- Eric, "The Ideal <i>SoC</i> Memory: IT- SRAM,"[2]	CMOS 180	-	-	300	-	multi-bank architecture and multi- layer metal interconnect	high- frequency operation, short latency, transparent refresh and soft-error rate	Easy to port, remove process incompatibility, extremely scal- able, cost effective	1T-SRAM enables the economic embedding of very large quantities of memory in SoC designs.
Jin Niu, Chung Sung-Yong, Yu Ronghua, Heyns Roux M , Berge Paul R., and Thompson Phillip E., "The Effect of Spacer Thickness- es on Si-Based Resonant Inter- band Tunneling Diode Perfor- mance and Their Application to Low-Power Tun- neling Diode SRAM Cir- cuits,"[3]	N channel depletion mode FET				0.5	Si based res- onant inter- band tunnel- ing diodes (RITD)	Temperature change may effect	Low stand by power con- sumption, in- crease circuit speed, reduce com- ponent count,	Suitable for low power memory ap- plications, Spacer thick- ness reduced to 16nm, Current den- sity reduced to 0.5A/cm2, peak-to- valley current ratio (PVCR) reduced to 2.2
Glaskowsky Peter N., "MoSys Ex- plains 1T-SRAM Technology Unique Architec- ture Hides Refresh Makes DRAM Work Like SRAM,"[4]	CMOS	-	-	-	-	Hide refresh technique- DRAM work like SRAM	Area may increase	High speed , high density,	No refreshing is required, No wait state,
Jones Mark-Eric, "1T-SRAM-Q TM : Quad-Density Technology Reins in Spiraling Memory Re- quirements,"[5]	45 CMOS	-	-	-	-	Quad Densi- ty Technolo- gy	Complex designing	Highly scala- ble, Reliable, Small size, Cost effective, Enhanced soft error rate, Improved yield	4times higher density than traditional 6T SRAM, Enhanced reliability using Trans- parent error

1001 (222) 0010					
					correction

TABLE 2: THE 2T SRAM BIT-CELL TOPOLOGY

Author & Title	Technology	Power	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
	(nm)	(µW)	(mm ²)	(MHz)	(V)				
Somasekhar Dinesh, Ye Yibin, Aseron Paolo, Lu Shih-Lien, Khel- lah Muhammad, Howard Jason, Ruhl Greg, Kar- nik Tanay, Borkar Shekhar Y., De Vivek, and Keshavarzi Ali, "2GHz 2Mb 2T Gain-Cell Memory Macro with 128GB/s Bandwidth in a 65nm Logic Pro- cess,"[6]	65	-	0.00028000	2000	1.1	Pipelined macro cells	area may increase	Fast cycle time, Faster read operation	retention time =10µs, Array Den- sity 92Mbit/cm2
Meinerzhagen Pascal, Teman Adam, Mor- dakhay Anatoli, Burg Andreas, and Fish Alexan- der, "A Sub-VT 2T Gain-Cell Memory for Bi- omedical Appli- cations,"[7]	180				0.4(sub- Vt)	SUB-VT GAIN-CELL	Capacitive coupling may occur	Good energy efficiency, low power consumption, highly robust	data reten- tion time is higher than data access time

TABLE 3: THE 3T SRAM BIT-CELL TOPOLOGY

Author& Title	Technology	Power	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
	(nm)	(µW)	(mm ²)	(MH	(V)				
				z)					
Ramesh Ani-	90	-	0.0000183	-	0.5	DualVth,	Noise	High speed	Read ac-
sha, Park Si-	CMOS					TSRAM(tunneling	margins	tunneling,	cess time-
Young, and						based static random	may in-	low static and	1ns,
Berge Paul R.,						access memory)	crease	dynamic power	Write ac-
"90 nm 32x32								dissipation,	cess
bit Tunneling								high robustness	time=0.5ns
SRAM									,
Memory Ar-									Array
ray With 0.5									size=32x32
ns Write Ac-									Standby
cess Time, 1									power
ns Read Ac-									dissipation
cess Time and									of 6x(10)-5

0.5 V Opera- tion,"[8]									mW per cell dynamic power dissipation of 1.8x (10)-7 mW per cell
Wagt van der J. P. A., Sea- baugh A.C., and Beam E.A., "RTD/HFET Low Standby Power SRAM Gain Cell,"[9]	HFET/RTD	-	-	-	0.4	Tunneling SRAM us- ing RTD(resonant tun- neling diodes), HFET(hetero structure field transistors)	Area over- heads may in- crease	Reduced standby power consumption, more compact, low current density	Reduced standby power reduc- tion=50nW , high speed, access time=0.5ns

TABLE 4: THE 4T SRAM BIT-CELL TOPOLOGY

Author & Title	Technology	Pow-	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Com-
	(nm)	er	(mm ²)	(MHz)	(V)				ments
		(µW)							
Nod Kenji, Matsui Kou-	180	-	0.0019344		1.8	Concept of	Tradeoff	Cell is com-	Cell
jirou , Takeda Koichi,	CMOS					Loadless	between	pact.	area is
and Nakamura Nor-						CMOS	cell size	High stability,	35%
itsugu, "A Loadless							and SNM	high speed	small-
CMOS Four-Transistor								and high den-	er.
SRAM Cell in a 0.18-um								sity	
Logic Technology,"[10]	180		0.01754		1.2	Match-line	Bitline can't	In ano a in	Power
Arsovski Igor, Chan- dler Trevis and	CMOS	-	0.01754	-	1.2		be high for	Increase in	
Sheikholeslami Ali, "A	CIVIOS					(ML) sense scheme	a long pe-	density	con- sump-
Ternary Content-						scheme	riod of		tion is
Addressable Memory							time		less.
(TCAM) Based on 4T							tille		1000.
Static Storage and In-									
cluding a Current-Race									
Sensing Scheme,"[11]									
Noda K., Matsui K.,	180	-	0.0019344	400	1.8	Dual-layered	Memory	Access speed	Access
Ito S., Masuoka S., Ka-	CMOS					twisted bit-	capacity is	and reliability	time =
wamoto H., Ikezawa						line,triple	less than	is increased	2.35 ns.
N., Takeda K., Aimoto						well shield-	embedded		Bit-line
Y., Nakamura N., Toyo-						ing	DRAM		signal
shima H., Iwasaki T.,							macros		delay is
and Horiuchi T., "An									re-
Ultra-High-Density									duced
High-speed Loadless									by 20-
Four-Transistor SRAM									25%.
Macro with a Dual-									SNM > 400 mV
Layered Wisted Bit-									400 mV
Line and a Triple-Well Shield,"[12]									
Jineiu, [12]									

ISSN 2229-5518									
Takeda K., Aimoto Y., Nakamura N., Toyo- shima H., Iwasaki T., Noda K., , Matsui K., Itoh S., Masuoka S., Horiuchi T., Nakagawa A., Shimogawa K., and Takahashi H., "A 16-Mb 400-MHz Loadless CMOS Four-Transistor SRAM Macro,"[13]	180 CMOS	-	54.08	400	1.8	Uses end- point dual- pulse drivers, wordline- voltage-level compensa- tion circuit and all- adjoining twisted bit- line scheme	Smaller storage- node ca- pacitance and lower load- element current	Accurate tim- ing control, stable data retention, bit-line cou- pling capaci- tance re- duced, high speed access and smaller size	Size is 66% of Coven- tional 6T SRAM. Access time = 2.5 ns
Yang Jinshen, and Chen Li,"A New Loadless 4- Transistor SRAM Cell with a 0.18 µm CMOS Technology,"[14]	180 CMOS				1.8	Bitlines are precharged to ground in- stead of V _{DD}	Tradeoff between the cellsize and cell stability. Node which is storing logic high can't retain its full swing val- ue because it is float- ing.	Consumes less power and less area	SNM = 446 mV, Cell layout size is 15% small- er. Highly stable when cell ratio=3. Used in high speed and high density SRAMs
Giraud B., Amara A., and Vladimirescu A., "A Comparative Study of 6T and 4T SRAM Cells in Double-Gate CMOS with Statistical Variation,"[15]	32 CMOS	_	-	-	1.2	Driverless (DL) SRAM cell	An extra back gate is required	Operating characteristics are improved, stability im- proved in read and re- tention mode, less access time	SNM > 350 mV Access time de- creased by 50% Area de- creased by 30%
Batude P., Jaud M-A., Thomas O., Clavelier L., Pouydebasque A., Vinet M., Deleonibus S., and Amara A, "3D CMOS Integra- tion:Introduction of Dynamic coupling and Application to Compact and Robust 4T SRAM,"[16]	TCAD	_	-	_	1.1	3D Integra- tion Technol- ogy	Higher TB is required	Stability and surface densi- ty increases, balance be- tween SNM and RNM improved	Leak- age current =10 pA/µm RNM = 320 mV SNM = 150 mV Density Gain =16.4%

ISSN 2229-5518	1		1	0	1				
Mazreah Azizi A., Sa- hebi Reza M., Manzuri Taghi M., Hosseini Ja- vad S., "A Novel Zero- Aware Four-Transistor SRAM Cell for High Density and Low Power Cache Application,"[17]	65 HSPICE	-		_	1.2	Uses two word-lines and one pair bit-line	Average leakage current is 15% great- er	High density and low pow- er, retains its data with leakage cur- rent and posi- tive feedback without re- fresh cycle	Aver- age delay access is 30% small- er. Aver- age dy- namic energy con- sump- tion is 45% small- er. SNM = 0.35 V
R Sandeep, Deshpande Narayan T, and Aswatha A R, "Design and Analysis of a New Loadless 4T SRAM Cell in Deep Submicron CMOS Technolo- gies,"[18]	130 CMOS, 90 CMOS, 65 CMOS	-		333.33	1.5 (130 CMOS), 1.2 (90 CMOS) and 1.1 (65 CMOS)	Bit-lines are precharged to ground	Read Ac- cess time is greater	Less power and less area, high stability	Capaci- tance of each bitline = 20 fF Load = 20 fF
Fan Ming-Long, Wu Yu-Sheng , Hu Vita Pi- Ho, Hsieh Chien-Yu, Su Pin, and Chuang Ching-Te, " Compari- son of 4T and 6T Fin- FET SRAM Cells for Subthreshold Operation Considering Variabil- ity—A Model-Based Approach,"[19]	32 FinFET				0.4	Model-based approach to consider im- pact of device variation on stability	-	Better nomi- nal READ static noise margin (RSNM)	Area re- duced by 25%.
Degalahal V., Vi- jaykrishnan N., and Irwin M. J., "Analyzing Soft Errors in Leakage Optimized SRAM De- sign,"[20]	70 HSPICE	-	-	-	No Vdd	4T SRAM without VDD	Between optimizing leakage power and improving immunity to soft er- ror	Leakage and area reduc- tion	Leak- age re- duced by 60- 80% Advan- van- tage in area by 12-33%

TABLE 5: THE 5T SRAM BIT-CELL TOPOLOGY

Author & Title			Ar-	Erog	Vdd	Mathadalam	Trade offs	Achievements	Comments
Author & Thie	Technology (nm)	Power (µW)	ea (mm ²)	Freq (MHz)	(V)	Methodology	Irade ons	Achievements	Comments
Tran Hiep, "Demonstration of 5T SRAM And 6T Dual-Port RAM Cell Ar- rays,"[21]	600 CMOS	-	-	-	2	Single bitline SRAM cell	-	Can operate at dual-port memory over a wide voltage supply range,improved cell size	Can be used in high density SRAM. Can be imple- ment in ASIC design.
Wieckowski M., and Margala M., "A Novel Five- Transistor (5T) Sram Cell For High Perfor- mance Cache," [22]	180 TSMC CMOS	-	0.00 67	-	1.8	Based on 7T current- mode cell	-	High-speed, Low-power. Optimization in transistor sizes.	57%enhancement in speed, 12% power reduction and 6% area re- duction.
Mohan Nitin and Sachdev Manoj, "Novel Ternary Storage Cells And Techniques For Leakage Reduc- tion In Ternary Cam,"[23]	180 CMOS	-			1.8	Ternary Con- tent Ad- dressable Memories (TCAM)	Unused state can't be stored in cell	Leakage reduc- tion, high speed, smaller area	Leakage de- creased by 32- 40%.
Cosemans S., Dehaene W., and Catthoor F., "A Low-Power Em- bedded SRAM for Wireless Ap- plications,"[24]	180 CMOS		0.69	250	1.6	Short buff- ered bitlines & memory databus, Read opera- tion using dynamic stability, Low-Swing Write Using Shared Low- Swing Re- ceivers, and Distributed Decoder	Large part of die used for on-chip signal monitoring circuits	Energy per access is re- duced, area reduced	Active power consumption reduced by fac- tor of 2. Energy per ac- cess reduced to 54% Energy = 9.5 pJ Delay = 0.74 ns
Wieckowski M., and Margala M., "A Portless SRAM Cell Using Stunt- ed Wordline Drivers,"[25]	180 CMOS	-	0.00 877	-	1.8	Portless con- cept in an isolated test cell	Some per- centage of current ratios in process results in slower operation & reduce efficiency	Higher SNM, less leakage, cell area re- duced	Static noise mar- gin increased by 22%. Leakage de- creased by 14%

1331 2229-3318				-					
Mazreaht Arash Azizi, Shalmani Mohammad Taghi Manzuri, Noormande Reza, and Mehrparvar Ali, "A Novel Zero-Aware	250 CMOS	_	0.01961	_	2.5	Loop-cutting strategy, use one word- line and one bit-line dur- ing read/write operation	_	Data is retained with leakage current and positive feed- back without refresh cycle	Cell size de- creased by 18%. Average delay is reduced by 20%. Average leakage current is 8% greater.
Read-Static-						Perution			
Noise-Margin-									
Free SRAM Cell									
for									
High Density and									
High Speed									
Cache Applica- tion,"[26]									
Nalam S., and	45	-	-	-	0.5	Novel	Area and	Robust read	Read stability
Calhoun Benton	CMOS					asymmetric	Write	operation	and improved
H., "Asymmetric						sizing ap-	Noise		writability
Sizing in a 45nm 5T SRAM to Im-						proach to increase read	Margin		through write
prove						ability			assist techniques.
Read Stability									
over 6T,"[27]									

TABLE 6: THE CONVENTIONAL 6T SRAM BIT-CELL TOPOLOGY

Author & Title	Technol- ogy (nm)	Power (µW)	Area (mm²)	Freq (MHz)	Vdd (V)	Method- ology	Trade offs	Achievements	Comments
Narasimhan S. ,Chiel H.J., and bhunia S., "Ultra- low-power and Robust Digital- Signal-Processing Hardware for Im- plantable Neural Interface Microsys- tems,"[28]	70 HSPICE	10	0.21	33.33	0.6	Preferen- tial De- sign,NSPa lgo,power gat- ing,voltag e scaling	Delay over- heads may in- crease	Improved total energy, highrobust- ness, high yield	Yield-79.94% Energy = 106.56 pJ Delay = 4.39 ns
Narasimhan S., and Bhunia Swarup, "Ultralow-Power and Robust Embed- ded Memory for Bioimplantable Microsystems,"[29]	45 HSPICE	-	0.000256 00	0.0002 5600	0.8	Power gating technique	Noise mar- gins may in- crease	Low energy dissipa- tion,betterarea, high robust- ness	Array size-(64x80) Noise margin-Read=209 Write=420 Hold=383 It is 611x faster and 1.4x denser than subThresh- old design. Energy = 33.72 pJ Delay = 0.37 ns

BPTM

Elakkumanan

Praveen, Thondapu

Fraveen, Inondapu Charan, and Sri- dhar Ramalingam, "A Gate Leakage Reduction Strategy For Sub-70nm Memory Cir- cuits,"[30]	BF1M					SRAM using dual Vth (Dy- namic voltage scaling)	perfor for- manc e.	savings	Геакаде
Hua Chung-Hsien, Cheng Tung-Shuan, and Hwang Wei, "Distributed Data- Retention Power Gating Techniques for Column and Row Co-Controlled Embedded SRAM,"[31]	130 CMOS	-	-	-	1	Column and row co- controlled power gated SRAM	Extra AND gate delay	High robust- ness	SNM-340 mV, active power reductions (PDP) 32-bit-49%, 16-bit-75% 8-bit -93%, area overhead- 8.1%
Sridhara Srinivasa R., DiRenzo Mi- chael, Lingam Srinivas, Lee Seok- Jun, Blázquez Raúl, Mxey Jay, Ghanem Samer, Lee Yu- Hung, Abdallah Rami, Singh Prashant, and Goel Manish, "Micro- watt Embedded Processor Platform for Medical Sys- tem-on-Chip Ap- plications,"[32]	130 CMOS	5nW/kH z(0.5) 19N w/kHz(0.1)	1.95 um sq bit cell or 1.3mm sq	<1mh z	0.5-1	Differen- tial SRAM,FF T accelera- tor	Leak- age pow- er,dy nam- icpow er,me mory band width ,rum time	Less leakage, more reliable	90% effective dc-dc converter, performance 7KHz(0.5v), 5MH(1v), Leakage power 7nW(0.3v), density of SRAM-32kb Energy = 100 nJ
Kulkarni Jaydeep P., and Roy Kaushik, "Ul- tralow-Voltage Process-Variation- Tolerant Schmitt- Trigger-Based SRAM Design,"[33]	130 CMOS	-	1.063	270 kHz	300 mV	Schmitt- Trigger (ST)- SRAM with Feedback mecha- nism	Bit cell area in- creas- es 2x.	better read- stability as well as better write-ability,	 1.6 x higher read static noise margin, 2x higher write-trip- point, Leakage current-0.372Ua
Rooseleer Bram, Cosemans Stefan, and Dehaene Wim, "A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low leakage power memory using dy- namic cell stability and a dual swing data link,"[34]	65 CMOS	25.2	0.48	850	1.0	Dual swing data link on the GBLs, High threshold voltage cells, Dynamic decoder with merged address latches	Noise mar- gins may in- crease	ultra low leak- age power and very low active en- ergy consump- tion, improved sta- bility, high speed, improved ro- bustness	Memory size -256 kbit, Wordlength -32 bit, Cell type- L = 60 nm, W = 120 nm Energy = 4.3 pJ/access

0.8

_

N-

controlled

1-3%

less

leakage

60% reduction in gate

Better leakage

savings

Bansal Aditya, Mukhopadhyay Saibal, and Roy Kaushik, "Device- Optimization Tech- nique	50 FinFET	-	-	-	1.0	FinFET	Ac- cess time and perfor for-	Minimized leakage cur- rent and drain capacitance to on-current ratio,	65%SRAM leakage is reduced, improves cell read failure by 200times,Tox-1.2nm
for Robust and Low-Power FinFET SRAM Design in NanoScale Era,"[35]							manc e,stab ility	high robust- ness,	
Amelifard Behnam, Fallah Farzan, and Pedram Massoud, "Leakage Minimi- zation of SRAM Cells in a Dual-Vt and Dual-Tox Technology," [36]	65 HSPICE	-	-	-	1.1	Dual Vt, Dual Tox	Area over- heads ,delay	Reduced leak- age power dissipation, improved per- formance	Power dissipation of SRAM array size-64x512 is reduced to 33%. Power dissipation of SRAM array size-32x512 is reduced to 40%. Vth-0.18v
Sharifkhani Mo- hammad and Sachdev Manoj, "An Energy Effi- cient 40 Kb SRAM Module With Ex- tended Read/Write Noise Margin in 0.13 um CMOS,"[37]	130 CMOS	-	-	100	0.4 per cell	Virtual ground architec- ture	Ac- cess time may in- crease	Low leakage current,energy efficient ,improved stability	28% noise margin en- hancement, size-40kb, leakage current- 27Pa/Cell, area overhead 8%, dynamic data stability management. Energy = 7 pJ
Lakshminarayanan S., Joung J., Nara- simhan G., Kapre R., Slanina M., Tung J., Whately M., Hou C-L., Liao W-J., Lin S-C., Ma P-G., Fan C-W., Hsieh M-C., Liu F- C., Yeh K-L., Tseng W-C., and Lu S.W., "Standby PowerReduction and SRAM Cell Optimization for 65nm Technology,"[38]	65 CMOS				1.0	Body bias- ing tech- nique	Sta- bility issues may arise	Reduced leak- age current, improved per- formance	Fast process corners, improved yield

TABLE 7: THE 7T SRAM BIT-CELL TOPOLOGY

Author & Title	Technology	Power	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
	(nm)	(µW)	(mm ²)	(MHz)	(V)				
Jiao Hailong, and	65	-	-	1000	1.2	Multi	Careful	Stronger	write margin
Kursun Volkan,	CMOS					Threshold	transistor	data stability	enhanced to
"Low Power and						CMOS tech-	sizing,cell	and lower	2.75x,
Robust Ground						nology	layout op-	leakage pow-	write delay
Gated Memory							timization	er consump-	reduced to
Banks with Com-								tion	71.70%,
bined Write Assist									data stability
Techniques,"[39]									increases by

ISSN 2229-5518	1								
Liu Zhiyu and Kursun Volkan,	65 CMOS	-	-	-	-	Dual Vth technique	Area over- heads,	Improved performance,	2.11x, leakage power consumption reduces by 65.38%. cell layout area is increased upto 26.97%, electrical quali- ty is enhanced by 9.36x Read SNM is improved by 2
"Characterization of a Novel Nine- Transistor SRAM Cell,"[40]						-	delay may increase	reduced leak- age power	times as com- pared to 6T SRAM, Leakage power is reduced by 57%
Birla Shilpi, Shukla Neeraj Kr., Pattanaik Mani- sha, Singh R.K., "Device and Cir- cuit Design Chal- lenges for Low Leakage SRAM for Ultra Low Power Applica- tions,"[41]	90 CMOS	-			0.5	A data pro- tection NMOS tran- sistor is add- ed.	1)write- write mar- gin decreases with de- creasing Vdd. 2)Read - storage data destruction	Vdd min- 440mV, Access time- 20ns, Better cell performance, Improved write margin	It may achieve high speeds,Leakage power is re- duced by 21%
Yadav Monika, and Akashe Shyam, "New Technique For Reducing Sub- Threshold Leak- age In SRAM,"[42]	180 CMOS				1.8	Sense Amplifiers	Layout op- timization	Lower leak- age current and power consumption	Area overhead increases by 16%, 47.5% better power saving
Takeda Koichi, Hagihara Yasuhi- ko, Aimoto Yo- shiharu, Nomura Masahiro, Naka- zawa Yoetsu, Ishii Toshio, and Koba- take Hiroyuki, "A Read-Static- Noise-Margin- Free SRAM Cell for Low-VDD and High-Speed Ap- plications,"[43]	90 CMOS	-		_	0.5	Read-static- noise- margin-free SRAM cell	Leakage current in- creases with temperature	Low Vdd and high speed operation. Smaller area, SNM is im- proved	Area is 23% smaller Access time is 20ns
P Rajeev Anand., and P Chandra Sekhar., "Reduce Leakage Currents in Low Power	90 CMOS	9.738	0.000041600	-	1.0	Dual-VTH and trans- mission gate technique	Read Access time in- creases	Leakage cur- rent decreas- es, reduced static power dissi-	Leakage cur- rent=133nA, gate current leakage reduc- es by 58%,

SRAM cell Struc- tures,"[44]			pation	static noise margin reduces by 10%
---------------------------------	--	--	--------	--

TABLE 8: THE 8T SRAM BIT-CELL TOPOLOGY

Author & Title	Tech- nology (nm)	Pow er (µW)	Area (mm²)	Fre q (M Hz)	Vdd (V)	Methodology	Trade offs	Achievements	Comments
Kim Tea-Hyoung, Liu J., and Kim C.H., "An 8T sub- threshold SRAM Cell Utilizing Re- verse Short Chan- nel Effect for Write Margin and Read Performance Im- provement,"[45]	130C MOS	-	0.000006 3648	-	1.2	Reverse short channel effect	Leakage cur- rent increas- es, gate capaci- tance increas- es	Improved read and write margin, reduced threshold volt- age	52% speedup , area overhead 20%, Ion/Ioff improved from 169 to 271, 3x longer channel length, no extra circuitary required
Verma N., and Chandrakasan A.P., "A 256 kb 65 nm 8T Subthresh- old SRAM Em- ploying Sense- Amplifier Redun- dancy,"[46]	65 CMOS	2.2		0.02 5	0.35	Sense amplifier redundancy	Increased device sizing and its statis- tical offset	High density, minimum operating voltage,more read write stability, low leakage power dissipa- tion	Leakage power saving 10x, array size (256x128),30% area overhead
Wang Bo, Zhou Jun, and Kim Tony T., "Maximization of SRAM Energy Efficiency Utilizing MTCMOS Tech- nology,"[47]	65 CMOS			-	0.4	Multi Threshold CMOS technol- ogy	Read,write delays may increase.	High energy efficiency, better perfor- mance	Array structure- 256 rows x 128 columns, 33% incease in energy efficiency.
Kwong Joyce, Ramadass Yogesh K., Verma Naveen, and Chandrakasan Anantha P., "A 65 nm Sub-Vt Micro- controller With Integrated SRAM and Switched Ca- pacitor DC-DC Converter,"[48]	65 CMOS	_	-	_	0.5	Timing pro- cess,subVt mi- crocontroller with sub threshold memory	Area may increase	Leakage power and energy is reduced, improved sta- bility	Array size-128kb, 1uW standby power at 300 mV, dc-dc converter achieves 75% effi- ciency Energy = 27.2 pJ

1551 2229-5518									
Liu Zhiyu and Kursun Volkan, "Characterization of a Novel Nine- Transistor SRAM Cell,"[40]	65 CMOS	_	-	-	-	Alternative communication channel (composed of a separate read bitline and the transistor stack) used for reading the data from the cell	Area over- head,delay may increase	Improved data stability	It may achieve high speeds. Leakage power is reduced by 23%.
Jain Sanjeev K., and Agarwal P., "A Low Leakage and SNM Free SRAM Cell Design in Deep Sub micron CMOS Technolo- gy[49]	90 CMOS	-	-	-	1.1	1 transistor re- duces gate leak- age and other makes cell SNM free.	Degradation in read access time when read = '0'	Reduction in gate leakage power. Cell area increases.	

TABLE 9: THE 9T SRAM BIT-CELL TOPOLOGY

Author &	Tech	Pow	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
Title				(MH		Wethodology	frade offs	Achievements	Comments
Inte	nology	er	(mm ²)	`.	(V)				
	(nm)	(µW		Z)					
)							
Ramani Ram-	45	-	-	-	0.3	Sub threshold	Degradation	Leakage power	Saving of PDP
nath Arun,	HSPICE					technique	in perfor-	reduction,	(write)- 2.80% <7T
and Choi Ken,							mance	improved read	SRAM, 4.48 % <
"A Novel 9T								,write margin	8T SRAM , 5.64%
SRAM Design									<9T SRAM
in Sub-									8.5 % <11T SRAM.
Threshold									(read)- 44.8 % <7T
Region,"[50]									SRAM
									66.18 % <9T SRAM
Razavipour	45	-	-	-	0.8	Dual Vth tech-	Access time	Reduced static	1 st cell-Gate leakage
G., Kusha	HSPICE					nique	increases	power dissipation	current decreases
Afzali A., and						-		and high perfor-	by 66%,
Pedram M.,								mance	Ideal power de-
"Design and									creases by 58%,
Analysis of									2nd cellGate leak-
Two Low									age current de-
Power SRAM									creases by 27%,
Cell Struc-									Ideal power de-
tures,"[51]									creases by 37%,
									Channel length-
									pmos=0.4um,NMO
									S=0.2um
									<i>3</i> −0.∠um

ISSN 2229-5518					-				
Mali Madan, Dr. Sutaone M.S., Bhalerao Mangesh, and Tak Shital, "Deep Submi- cron Imple- mentation of Gating Tran- sistor Power Saving Tech- nique for Power Opti- mized Code Book SRAM,"[52]	250 SPICE	-	-	-	0.6	Attachement of extra row and column to SRAM	Area in- creases with decrease in power	Improved reliabil- ity, Access time, power dissipation is reduced ,	Access time reduc- es by 2ns, array size-256*8, density -32kb, bit line length-1mm max, no metal layers-3, Power Dissipation reduced to 13%
Masuda Cho- taro, Hirose Tetsuya, Matsumoto Kei, Osaki Yuji, Kuroki Nobutaka, and Numa Masahiro, "High Cur- rent Efficiency Sense Ampli- fier Using Body-Bias Control for	350 SPICE	-	-	0.003 33	0.5	current latch sense amplifier with a current- reuse technique	Power dissipation may increase	High speed pre charging, improved perfor- mance, small overhead	pre-charge time decreased by 86.9% , power dissipation increased by 8.6%,
Ultra-Low- Voltage SRAM,"[53]									
Clark Law- rence T., Mor- row Michael and Brown William, "Re- verse-Body Bias and Sup- ply Collapse for Low Effec- tive Standby Power,"[54]	130 CMOS	165	125000 000000 0	0.032	1	Reverse body bias (RBB), voltage collapse technique	Area may increase	Low power dissipation, high efficiency, cost remains same	Easy to design RBB, density-34kb,83% stand by power reduction
Liu Zhiyu and Kursun Volkan, "Characteri- zation of a Novel Nine- Transistor SRAM Cell,"[40]	65 CMOS	-	-	2000	1	Two separate data access mechanisms for the read and write opera- tions.	Area may increase.	Improved data stability and leak- age power reduc- tion.	It may be used for high speed circuits. leakage power is reduced by 51%.

Singh R., Pat-	45	-	-	-	0.8	IP3	SRAM	bit-	Area and	l Reduced power	tOX = 2.4 nm, Vthn
tanaik M., and	CMOS					cell			performance	dissipation,	= 0.224 V, Vthp =
Shukla N.,										Improved stability	0.24V at T =
"Characteri-											27°C.during write-
zation of a											IP3 cell demands
Novel Low-											17.65% and 41.53%
Power SRAM											less power as com-
Bit-Cell Struc-											pared to 6T and PP
ture at Deep											cells.
Sub-Micron											
CMOS Tech-											
nology for											
Multimedia											
Applica-											
tions,"[55]											

TABLE 10: THE 10T SRAM BIT-CELL TOPOLOGY

Author & Title	Tech-	Pow	Area	Fre	Vdd	Methodology	Trade offs	Achievements	Comments
	nology	er	(mm²)	q	(V)				
	(nm)	(µW		(M					
)		Hz)					
Saripalli Vinay,	45	-	-	-	<3	TFET (tunnel	Stability	Improved	Improved varia-
Datta Suman,	TCAD				00mV	FET) Schmitt-	issues	read/write noise	tion tolerance,
Narayanan Vi-						Trigger (ST)-		margins,	1.2x reduction in
jaykrishnan, and						SRAM with		lowenergy,	dynamic energy,
Kulkarni						Feedback		improved perfor-	13x reduction in
Jaydeep P.,						mechanism		mance,	leakage power
"Variation-								can operate at low	
Tolerant Ultra								Vcc.	
Low-Power									
Heterojunction									
Tunnel FET									
SRAM De-									
sign,"[56]									
Calhounand	65	3.28	-	0.47	0.3	Separate read	Speed may	Improved cell sta-	It saves 2.5x and
Benton High-	CMOS			5		and write word	decrease	bility,	3.8x in leakage
smith and						line		better noise mar-	power by scaling
Chandrakasan								gins,	from 0.6v to 0.4v
Anantha P., "A								power and energy	
256-kb 65-nm								saving	
Sub-threshold									
SRAM Design									
for Ultra-Low-									
Voltage Opera-									
tion,"[57]									
Ebrahimi Amir,	130	9.37	-	-	0.32	Separate read	Area	Better SNM,	512 cells per bit
Kargaran Ehsan	HSPICE					and write word	overheads	reduced leakage	line and 128 col-
and Golmakani						line		current	umn cell array is
			1	1					achieves better
Abbas,"Design									
Abbas,"Design and Analysis of									read and write
0									read and write
and Analysis of									read and write
and Analysis of Three New									read and write

1	171	
т	424	

Lo Cheng-Hung and Huang Shi- Yu, "P-P-N Based 10T SRAM Cell for Low-Leakage and Resilient Subthreshold Operation," [59]	90 CMOS	_	-	0.9	0.32		coupled inverter	Area overheads	Low cell leakage, high noise immuni- ty, ability to operate at low voltage, high density	High immunity to data depend- ent bit line leak- age
Moradi Farshad , Wisland Dag T., Mahmoodi Hamid, Berg Yngvar, and Cao. Tuan Vu, "New SRAM Design Using Body Bias Tech- nique for Ultra Low Power Ap- plications,"[60]	65	-	-	-	0.3	Body techniqu	biasing æ	Area overheads may in- crease	Low power dissi- pation, ultra supply volt- age scaling, SNM improvemnt	Static noise mar- gin is improved by 15%, Improvement in SNM of READ cycle-22%

TABLE 11: THE 11T SRAM BIT-CELL TOPOLOGY

Author & Title	Tech- nology	Power (µW)	Area (mm ²)	Freq (MHz)	Vdd (V)	Methodology	Trade offs	Achievements	Comments
	(nm)	(1)	、 ,						
Moradi Farshad, Wisland Dag.T., Aunet Snorre, Mahmoodi Hamid and Cao Tuan Vu, "65nm Sub- Threshold 11T- SRAM for Ultra Low Voltage Ap- plications,"[61]	65 CMOS			-	0.2	Boost capaci- tor (CB) is used	Area may increase	Higher SNM and higher speed	Area overhead between 22 -28%, 4x improvement in read speed
Ebrahimi Amir, Kargaran Ehsan and Golmakani Abbas,"Design and Analysis of Three New SRAM Cells,"[58]	130 CMOS	6.29	-	-	0.27	Separate read and write word line	Area overheads	Better SNM, reduced leak- age current	512 cells per bit line and 128 col- umn cell array is achieves better read and write

Singh Ajay Kumar, Prabhu C.M.R., Pin Soo Wei and Hou Ting Chik, "A Pro- posed Symmetric and Balanced 11-T SRAM Cell for lower power con- sumption,"[62]	250 CMOS	-	-	-	2.5	Two tail transistors are used	Write access delay increased	Low circuit activity fac- tor, Low active power densi- ty, reduced power con- sumption	Consumes 40% less average pow- er, 7% slower during write operation
Lin Sheng, Kim Yong-Bin, and Lombardi Fabrizio, "A 11-Transistor Nanoscale CMOS Memory Cell for Hardening to Soft Errors,"[63]	32 CMOS	-	0.3764	-	0.9	Hardening approach	Speed and sta- bility is- sues	Power delay product re- duction. soft error tolerance im- proved	Superior re- sistance to soft errors, high performance
Chiu Yi-Wei, Hu Yu-Hao, Tu Ming- Hsien, Zhao Jun- Kai, Jou Shyh-Jye and Chuang Ching-Te, "A 40 nm 0.32 V 3.5 MHz 11T Single-Ended Bit-Interleaving Subthreshold SRAM with Data- Aware Write- Assist,"[64]	40 CMOS			3.5	0.32	Bit interleav- ing with data aware power cut off	Area overhead may in- crease	Improved write ability, can work at very low Vdd	Leakage pow- er=13.5uW Switching ener- gy=0.49pJ

TABLE 12: THE 12T SRAM BIT-CELL TOPOLOGY

Author & Title	Technology	Power	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
	(nm)	(µW)	(mm ²)	(MHz)	(V)				
Mall Ambrish,	45	-	-	-	0.4	Data reten-	Area over-	Low power	Transistor
Singh Suryabhan	CMOS					tion p gated,	heads	dissipation,	width=100nm,
Pratap, Mishra						Series con-	may in-	reduced leak-	
Manish and Sri-						nected tail	crease	age current,	by 45.94%
vastava Geeti-						transistors		low energy	
ka,"Analysis Of								consumption	
12T SRAM CELL									
For Low Power									
Application,"[65]									

1331N 2229-3318									
Chen Hu, Jun	130	-	-	-	0.4	Schmitt Trig-	Robustness	High stability,	Power consump-
Yang, Meng	CMOS					ger based	issues may	more robust-	tion reduces to
Zhang and						SRAM	arrive	ness	16%,
Xiulong Wu, "A									30.2% grater hold
12T subthreshold									margin,
SRAM Bit-cell for									45% better SNM
Medical Device									
Application," [66]									
Shayan Md, Singh	130	-	-	-	1.2	SEU(single	Reliability	High robust-	62x increase in
Virendra, Singh	CMOS					event upset)	may re-	ness,	Qcritical,
Adit D and Fujita						Tolerant	duce,	high perfor-	It does not flip
Masahiro, "SEU						SRAM	area over-	mance,	transient pulse
Tolerant Robust							heads may	more eco-	$,\alpha=0.2$ ns $,\beta=0.05$ ns
Memory Cell De-							increase	nomical	·
sign,"[67]									

TABLE 13: THE 13T SRAM BIT-CELL TOPOLOGY

Author & Ti-	Tech-	Ро	Ar	Fre	V	Method-	Trade	Achieve-	Comments
tle	nology	wer	ea	q	dd	ology	offs	ments	
	(nm)	(μ	(m	(M					
		W)	m²)	Hz)	(V)				
Sriram K V,	180	283.33	-	1	1.1	Single	Area	High perfor-	Power consump-
Ranganna	CMOS					read/write	overheads	mance,	tion-
Ramappa Naik,						architecture,	may in-	improved	static=283.14uW
Pavan Nandan S						Stack tech-	crease	noise margin,	dynamic=161.273uw
G and						nique		low power	Static noise margin-
Kendaganna								consumption	read SNM=0.70v
Swamy, "Design									write SNM=0.685v
Of Low Power									
64-Bit SRAM									
Using 13T									
Cell,"[68]									

TABLE 14: THE 14T SRAM BIT-CELL TOPOLOGY

Author & Title	Tech-	Pow-	Area	Freq	Vdd	Methodology	Trade offs	Achievements	Comments
	nology	er	(mm ²)	(MHz)	(V)				
	(nm)	(µW)							
Fujiwara Hidehi-	65	-	-	-	0.26	Quality of bit	Larger β ratio,	Improved relia-	SRAM works in
ro, Okumura	CMOS						SNM may in-	bility, speed.	3 modes-
Shunsuke, Iguchi							crease	Read and write	normal,
Yusuke, Noguchi								operations are	high speed,
Hiroki, Kawagu-								improved	dependable
chi Hiroshi and									
Yoshimoto									
Masahiko, "A									
7T/14T Dependa-									
ble SRAM and Its									
Array Structure									
to Avoid Half									
Selection,"[69]									

IJSER © 2014 http://www.ijser.org

Yoshimoto	150	_	_	_	0.1	FD-SOI	Between area	Improved BER	Alpha-induced
Shusuke, Ama- shita Takuro, Okumura Shun- suke, Yamaguchi Kosuke, Yo- shimoto Masahiko, and Kawaguchi Hiro- shi, "Bit Error and Soft Error Hardenable 7T/14T SRAM with 150-nm FD- SOI Process,"[70]	TCAD				0.1		(cost) and reli- ability	(Bit Error Rate), SER (Soft Error Rate) and relia- bility. Improved mini- mum operating voltage	SER suppressed by 80% Neutron- induced SER decreased by 34.4% Qcrit increased by 10-70% 14Tsuperior than 7T
Soft Process, [70] Nakata Yohei, Ito Yasuhiro, Sugure Yasuo, Oho Shi- geru, Takeuchi Yusuke, Okumu- ra Shunsuke, Kawaguchi Hiro- shi, and Yo- shimoto Masahiko, "Model-Based Fault Injection for Failure Effect Analysis– Evaluation of Dependable SRAM for Vehi- cle Control Units,"[71]	65 CMOS	-			0.4-0.8	Fault Injec- tion System	Dependability of SRAM af- fects dependa- bility of pro- cessor system	System level de- pendability im- proves.	Area overhead is 11% greater. Has 2 modes – normal mode and dependable mode. <i>Vmin</i> improved by 0.05–0.15 V
Jinwook Jung, Yohei Nakata, Shunsuke Oku- mura, Hiroshi Kawaguchi, and Masahiko Yo- shimoto, "256-KB Associativity- Reconfigurable Cache with 7T/14T SRAM for Aggressive DVS Down to 0.57 V,"[72]	65 CMOS	-	-		0.115	Associativity- reconfigura- ble cache. Consists of pair of cache ways. 2 pmos tran- sistors are added	Performance decrease. area overhead is increased	Reliability en- hance	Possesses scala- ble characteris- tic of reliability. Area overhead increased by 1.91% and 5.57% in 32-KB and 256-KB caches, It has 2 modes- normal mode and dependable mode

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518 1428

ISSN 2229-5518									
Jinwook Jung, Yohei Nakata, Shunsuke Oku- mura, Hiroshi Kawaguchi, and Masahiko Yo- shimoto, "A Vari- ation-Aware 0.57- V Set-Associative Cache with Mixed Associa- tivity Using 7T/14T SRAM,"[73]	65 CMOS	_	2.04	-	0.57 in de- penda ble mode	Induced de- fective SRAM cells, 2 pmos transistors are added andmixed associativity scheme is used	Area overhead, Don't have sufficient op- erating mar- gins	Minimum oper- ating voltage (<i>Vmin</i>) is re- duced, reliability im- proves	Reduced <i>Vmin</i> by 80 mV with- in 7.81% capaci- ty and 5.22% area overhead. It has 2 modes - normal mode and dependable mode
Yamaguchi Kosuke, Okumu- ra Shunsuke, Yoshimoto Masahiko, and Kawaguchi Hiro- shi, "0.42-V 576- kb 0.15-µm FD- SOI SRAM with 7T/14T Bit Cells and Substrate Bias Control Cir- cuits for Intra-Die and Inter-Die Variability Com- pensation,"[74]	0.15 FD- SOI	-	-		0.42	FD-SOI substrate bias control mech- anism.	Process varia- tions may af- fect the sys- tem.	Maximizes the operating mar- gin, retention voltage is reduced	Two operating modes - normal mode and de- pendable mode. Minimum re- tention is re- duced to 0.28 V
Nakata Yohei , Okumura Shun- suke , Kawaguchi Hiroshi , and Yoshimoto Masahiko, "0.5-V Operation Varia- tion-Aware Word-Enhancing Cache Architec- ture Using 7T/14T hybrid SRAM," [75]	65				0.5	Variation aware word enhancing scheme	Extra control lines are re- quired	Improved relia- bility and control lines, Low power con- sumption	Suitable for dynamic volt- age and fre- quency scal- ing(DVFS), Power reduc- tions are 90% and 65%

Conclusion

In this paper a comparison on SRAM-Bit Cell based on different technology, cell type and analysis of various design techniques is done. In Dual Vth technique both leakage power and performance are improved with an area overhead and speed penalty. The MTCMOS offers low leakage power consumption with stronger stability at the cost of additional transistors. In Body biasing threshold voltage is modified which reduces leakage power but at the cost of stability. Sense amplifier offers low leakage power dissipation with increased device sizing and layout optimization. In Sub threshold both leakage power, read and write margins are improved at the cost of performance degradation. If speed is increased, area also increases. If high robustness is obtained, then noise margins increases.

ACKNOWLEDGMENT

The authors are grateful to their organizations for their help and support to carry-out this work.

IJSER © 2014 http://www.ijser.org

REFERENCES

- Moselund K.E., Bouvet D., Pott V., Meinen C., Kayal M., and Ionescu A.M., "Punch-through impact ionization MOSFET (PIMOS): From device principle to applications," IEEE J. Solid-State Circuits, vol. 52, No. 9, pp. 1336-1344, May 2008.
- [2] Leung Wingyu, Hsu Fu-Chieh, and Jones Mark-Eric, "The Ideal SoC Memory: IT-SRAM," Proc. 2000 13th Annual IEEE ASIC/SOC Conf., Arlington, pp. 32-36, 13-16 Sep. 2000.
- [3] Jin Niu, Chung Sung-Yong, Yu Ronghua, Heyns Roux M, Berge Paul R., and Thompson Phillip E., "The Effect of Spacer Thicknesses on Si-Based Resonant Interband Tunneling Diode Performance and Their Application to Low-Power Tunneling Diode SRAM Circuits," IEEE Trans. Electronic Devices, vol. 53, No. 9, pp. 2243 - 2249, Sept. 2006.
- [4] Glaskowsky Peter N., "MoSys Explains 1T-SRAM Technology Unique Architecture Hides Refresh Makes DRAM Work Like SRAM," in the White Paper of Microdesign Resources, vol. 13, No. 12, 13 Sept. 2009.
- [5] Jones Mark-Eric, "1T-SRAM-Q[™]: Quad-Density Technology Reins in Spiraling Memory Requirements," in the White Paper of Microdesign Resources, pp 1-8, June 2005.
- [6] Somasekhar Dinesh, Ye Yibin, Aseron Paolo, Lu Shih-Lien, Khellah Muhammad, Howard Jason, Ruhl Greg, Karnik Tanay, Borkar Shekhar Y., De Vivek, and Keshavarzi Ali, "2GHz 2Mb 2T Gain-Cell Memory Macro with 128GB/s Bandwidth in a 65nm Logic Process," IEEE Int. Solid State Circuits Conf., San Francisco, pp. 274 613, 3-7 Feb. 2008.
- [7] Meinerzhagen Pascal, Teman Adam, Mordakhay Anatoli, Burg Andreas, and Fish Alexander, "A Sub-VT 2T Gain-Cell Memory for Biomedical Applications," IEEE Subthreshold Microelectronics Conf., Boston, 9-10 Oct. 2012.
- [8] Ramesh Anisha, Park Si-Young, and Berge Paul R., "90 nm 32x32 bit Tunneling SRAM Memory Array With 0.5 ns Write Access Time, 1 ns Read Access Time and 0.5 V Operation," *IEEE Trans. on Circuits and Syst.*, vol. 58, No. 10, pp. 2432-2445, Oct. 2011.
- [9] Wagt van der J. P. A., Seabaugh A.C., and Beam E.A., "RTD/HFET Low Standby Power SRAM Gain Cell," *IEEE Electron Device Letters*, vol. 19, No. 1, pp.7-9, Jan. 1998.
- [10] Nod Kenji, Matsui Koujirou, Takeda Koichi, and Nakamura Noritsugu, "A Loadless CMOS Four-Transistor SRAM Cell in a 0.18-um Logic Technology," IEEE Trans. on Electron Devices, vol. 48, No. 12, pp. 2851-2855, Dec. 2001.
- [11] Arsovski Igor, Chandler Trevis and Sheikholeslami Ali, "A Ternary Content-Addressable Memory (TCAM) Based on 4T Static Storage and Including a Current-Race Sensing Scheme," IEEE J. Solid-State Circuits, vol. 38, No. 1, pp. 155-158, Jan. 2003.
- [12] Noda K., Matsui K., Ito S., Masuoka S., Kawamoto H., Ikezawa N., Takeda K., Aimoto Y., Nakamura N., Toyoshima H., Iwasaki T., and Horiuchi T., "An Ultra-High-Density High-speed Loadless Four-Transistor SRAM Macro with a Dual-Layered Wisted Bit-Line and a Triple-Well Shield," Proc. 2000 IEEE Custom Integrated Circuits Conf., Orlando, pp. 283-286, 21-24 May 2000.
- [13] Takeda K., Aimoto Y., Nakamura N., Toyoshima H., Iwasaki T., Noda K., Matsui K., Itoh S., Masuoka S., Horiuchi T., Nakagawa A., Shimogawa K., and Takahashi H., "A 16-Mb 400-MHz Loadless CMOS Four-Transistor SRAM Macro," *IEEE J. Solid-State Circuits*, vol. 35, No. 11, pp. 1631-1640, Nov. 2000.
- [14] Yang Jinshen, and Chen Li, "A New Loadless 4-Transistor SRAM Cell with a 0.18 µm CMOS Technology," IEEE Electrical and Computer Engineering Conf., Vancouver, pp. 538-541, 22-26 April 2007.
- [15] Giraud B., Amara A., and Vladimirescu A., "A Comparative Study of 6T and 4T SRAM Cells in Double-Gate CMOS with Statistical Variation," Int. Symp. 2007 IEEE Circuits and Systems Conf., New Orleans, pp. 3022-3025, 27-30 May 2007.
- [16] Batude P., Jaud M-A., Thomas O., Clavelier L., Pouydebasque A., Vinet M., Deleonibus S., and Amara A, "3D CMOS Integration:Introduction of Dynamic coupling and Application to Compact and Robust 4T SRAM," *IEEE Integrated Circuit Design and Technology Conf.*, Austin, pp.281-284, 2-4 June 2008.
- [17] Mazreah Azizi A., Sahebi Reza M., Manzuri Taghi M., Hosseini Javad S., "A Novel Zero-Aware Four-Transistor SRAM Cell for High Density and Low Power Cache Application," *IEEE Advanced Computer Theory and Engineering Conf.*, phuket, pp.571-575, 20-22 Dec. 2008.
- [18] R Sandeep, Deshpande Narayan T, and Aswatha A R, "Design and Analysis of a New Loadless 4T SRAM Cell in Deep Submicron CMOS Technologies," 2nd Int. Emerging Trends in Engineering and Technology Conf., Nagpur, pp.155-161, 16-18 Dec. 2009.
- [19] Fan Ming-Long, Wu Yu-Sheng, Hu Vita Pi-Ho, Hsieh Chien-Yu, Su Pin, and Chuang Ching-Te, "Comparison of 4T and 6T FinFET SRAM Cells for Subthreshold Operation Considering Variability – A Model-Based Approach," IEEE Trans. On Electron Devices, vol. 58, No. 3, Mar. 2011.
- [20] Degalahal V., Vijaykrishnan N., and Irwin M. J., "Analyzing Soft Errors in Leakage Optimized SRAM Design," Proc. 2003 16th Int. VLSI Design Conf., pp.227-233, 4-8 Jan. 2003.
- [21] Tran Hiep, "Demonstration of 5T SRAM And 6T Dual-Port RAM Cell Arrays," Symp. 1996 IEEE Circuits and Systems Conf., New Orleans, pp. 3022-3025, 27-30 May 2007.
- [22] Wieckowski M., and Margala M., "A Novel Five-Transistor (5T) Sram Cell For High Performance Cache," *Proc. 2005 IEEE Int. SOC Conf.*, Herndon, pp.101-102, 19-23 Sept. 2005.
- [23] Mohan Nitin and Sachdev Manoj, "Novel Ternary Storage Cells And Techniques For Leakage Reduction In Ternary Cam," Proc. 2006 IEEE Int. SOC Conf., Taipei, pp.311-314, 24-27 Sept. 2006.
- [24] Cosemans S., Dehaene W., and Catthoor F., "A Low-Power Embedded SRAM for Wireless Applications," IEEE J. Solid-State Circuits, vol. 42, No. 7, pp. 1607-1617, July 2007.
- [25] Wieckowski M., and Margala M., "A Portless SRAM Cell Using Stunted Wordline Drivers," IEEE Int. Symp. 2008 Circuits and Systems Conf., pp. 584-587, 27 June 2008.
- [26] Mazreaht Arash Azizi, Shalmani Mohammad Taghi Manzuri, Noormande Reza, and Mehrparvar Ali, "A Novel Zero-Aware Read-Static-Noise-Margin-Free SRAM Cell for High Density and High Speed Cache Application," 9th Int. Solid State And Integrated Circuit Technology Conf., Beijing,

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518

pp. 876 - 879, 20-23 Oct. 2008.

- [27] Nalam S., and Calhoun Benton H., "Asymmetric Sizing in a 45nm 5T SRAM to Improve Read Stability over 6T," IEEE Custom Integrated Circuits Conf., San Jose, pp. 709-712, 13-16 Sept. 2009.
- [28] Narasimhan S., Chiel H.J., and Bhunia Swarup, "Ultra-Low-Power and Robust Digital-Signal-Processing Hardware for Implantable Neural Interface Microsystems," IEEE Trans. Biomed. Circuits Syst., vol. 5, No. 2, pp. 169-178, Apr. 2011.
- [29] Hashemian M., and Bhunia Swarup, "Ultralow-Power and Robust Embedded Memory for Bioimplantable Microsystems," IEEE Computer Society, 26th Int. Conf. on VLSI Design and 12th Int. Conf. on Embedded Systems, Pune India, pp. 66-71, 5-10 Jan. 2013.
- [30] Elakkumanan Praveen, Thondapu Charan, and Sridhar Ramalingam, "A Gate Leakage Reduction Strategy For Sub-70nm Memory Circuits," Proc. 2004 IEEE Implementation of High Performance Circuits Conf., Dallas, pp. 145-148, 27 Sept. 2004.
- [31] Hua Chung-Hsien, Cheng Tung-Shuan, and Hwang Wei, "Distributed Data-Retention Power Gating Techniques for Column and Row Co-Controlled Embedded SRAM," IEEE Memory Technology, Design, and Testing Conf., Taipei, pp.129-134, 5 Aug. 2005.
- [32] Sridhara Srinivasa R., DiRenzo Michael, Lingam Srinivas, Lee Seok-Jun, Blázquez Raúl, Mxey Jay, Ghanem Samer, Lee Yu-Hung, Abdallah Rami, Singh Prashant, and Goel Manish, "Microwatt Embedded Processor Platform for Medical System-on-Chip Applications," IEEE J. Solid-State Circuits, vol. 46, No. 4, pp. 721-730, Apr. 2011.
- [33] Kulkarni Jaydeep P., and Roy Kaushik, "Ultralow-Voltage Process-Variation-Tolerant Schmitt-Trigger-Based SRAM Design," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, No. 2, pp. 319-332, Feb. 2011.
- [34] Rooseleer Bram, Cosemans Stefan, and Dehaene Wim, "A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell stability and a dual swing data link," Proc. 2011 IEEE ESSCIRC, Helsinki, pp. 519-522, 12-16 Sept. 2011.
- [35] Bansal Aditya, Mukhopadhyay Saibal, and Roy Kaushik, "Device-Optimization Technique for Robust and Low-Power FinFET SRAM Design in NanoScale Era," IEEE Trans. Electron Devices, vol. 54, No. 6, pp. 1409-1419, June 2007.
- [36] Amelifard Behnam, Fallah Farzan, and Pedram Massoud, "Leakage Minimization of SRAM Cells in a Dual-Vt and Dual-Tox Technology," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, No. 7, pp. 851-860, July 2008.
- [37] Sharifkhani Mohammad and Sachdev Manoj, "An Energy Efficient 40 Kb SRAM Module With Extended Read/Write Noise Margin in 0.13 um CMOS," IEEE J. Solid-State Circuits, vol. 44, No. 2, pp. 620-630, Feb 2009.
- [38] Lakshminarayanan S., Joung J., Narasimhan G., Kapre R., Slanina M., Tung J., Whately M., Hou C-L., Liao W-J., Lin S-C., Ma P-G., Fan C-W., Hsieh M-C., Liu F-C., Yeh K-L., Tseng W-C., and Lu S.W., "Standby Power Reduction and SRAM Cell Optimization for 65nm Technology," 10th Int. Symp. 2009 IEEE Quality Electronic Design Conf., San Jose, pp. 471-475, 16-18 Mar. 2009.
- [39] Jiao Hailong, and Kursun Volkan, "Low Power and Robust Ground Gated Memory Banks with Combined Write Assist Techniques," *IEEE Faible Tension Faible Consommation*, Paris, pp. 1-4, 6-8 June 2012.
- [40] Liu Zhiyu and Kursun Volkan, "Characterization of a Novel Nine-Transistor SRAM Cell," IEEE Trans. on Very Large Scale Integration Syst., vol. 16, No. 4, pp. 488-492, Apr. 2008.
- [41] Birla Shilpi, Shukla Neeraj Kr., Pattanaik Manisha, Singh R.K., "Device and Circuit Design Challenges for Low Leakage SRAM for Ultra Low Power Applications," IEEE Canadian Journal on Electrical & Electronics Engineering, vol. 1, No. 7, pp. 156-167, Dec. 2010.
- [42] Yadav Monika, and Akashe Shyam, "New Technique For Reducing SubThreshold Leakage In SRAM," IEEE Computer Society, 2nd Int. Advanced Computing & Communication Technologies Conf., Rohtak India, pp. 374-377, 7-8 Jan. 2012.
- [43] Takeda Koichi, Hagihara Yasuhiko, Aimoto Yoshiharu, Nomura Masahiro, Nakazawa Yoetsu, Ishii Toshio, and Kobatake Hiroyuki, "A Read-Static-Noise-Margin-Free SRAM Cell for Low-VDD and High-Speed Applications," *IEEE J. Solid-State Circuits*, vol. 41, No. 1, pp.113-121, Jan. 2006.
- [44] P Rajeev Anand., and P Chandra Sekhar., "Reduce Leakage Currents in Low Power SRAM cell Structures," 9th Int. Symp. 2011 IEEE Parallel and Distributed Processing with Applications Workshops Conf., Busan, pp. 33-38, 26-28 May 2011.
- [45] Kim Tea-Hyoung, Liu J., and Kim C.H., "An 8T subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement," IEEE Custom Integrated Circuits Conf., San Jose, pp. 241-244,16-19 Sept. 2007.
- [46] Verma N., and Chandrakasan A.P., "A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy," IEEE J. Solid-State Circuits, vol. 43, No. 1, pp. 141-149, Jan. 2008.
- [47] Wang Bo, Zhou Jun, and Kim Tony T., "Maximization of SRAM Energy Efficiency Utilizing MTCMOS Technology," 4th Asia Symp. 2012 IEEE Quality Electronic Design Conf., Penang, pp. 35-40, 10-11 July 2012.
- [48] Kwong Joyce, Ramadass Yogesh K., Verma Naveen, and Chandrakasan Anantha P., "A 65 nm Sub-Vt Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Converter," IEEE J. Solid-State Circuits., vol. 44, No. 1, pp. 115-126, Jan. 2009.
- [49] Jain Sanjeev K., and Agarwal P., "A Low Leakage and SNM Free SRAM Cell Design in Deep Sub micron CMOS Technology," 5th Int. Embedded Systems And Design Conf., 3-7 Jan. 2006.
- [50] Ramani Ramnath Arun, and Choi Ken, "A Novel 9T SRAM Design in Sub-Threshold Region," IEEE Electro/Information Technology Int. Conf., Mankato US, pp. 1-6, 15-17 May 2011.
- [51] Razavipour G., Kusha Afzali A., and Pedram M., "Design and Analysis of Two Low Power SRAM Cell Structures," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, No. 10, pp. 1551-1555, Mar. 2009.
- [52] Mali Madan, Dr. Sutaone M.S., Bhalerao Mangesh, and Tak Shital, "Deep Submicron Implementation of Gating Transistor Power Saving Technique for Power Optimized Code Book SRAM," 4th IEEE Industrial Electronics and Applications Conf., Xian, pp. 2616-2619, 25-27 May 2009.
- [53] Masuda Chotaro, Hirose Tetsuya, Matsumoto Kei, Osaki Yuji, Kuroki Nobutaka, and Numa Masahiro, "High Current Efficiency Sense Amplifier Using Body-Bias Control for Ultra-Low-Voltage SRAM," 54th Int. Midwest Symp. 2011 IEEE Circuits and Systems Conf., Seoul, pp.1-4, 7-10 Aug, 2011.
- [54] Clark Lawrence T., Morrow Michael and Brown William, "Reverse-Body Bias and Supply Collapse for Low Effective Standby Power," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, No. 9, pp. 947-956, Sept. 2004.

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518

- [55] Singh R., Pattanaik M., and Shukla N., "Characterization of a Novel Low-Power SRAM Bit-Cell Structure at Deep Sub-Micron CMOS Technology for Multimedia Applications," Circuits and Systems Scientific Research, vol. 3, No. 1, pp. 23-28, Jan. 2012.
- [56] Saripalli Vinay, Datta Suman, Narayanan Vijaykrishnan, and Kulkarni Jaydeep P., "Variation-Tolerant Ultra Low-Power Heterojunction Tunnel FET SRAM Design," Symp. 2011 IEEE Nanotechnol. Mag. Conf., San Diego, pp. 45-52, 8-9 June 2011.
- [57] Calhounand Benton Highsmith and Chandrakasan Anantha P., "A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation," IEEE J. Solid-State Circuits, vol. 42, No. 3, pp. 680-688, Mar. 2007.
- [58] Ebrahimi Amir, Kargaran Ehsan and Golmakani Abbas, "Design and Analysis of Three New SRAM Cells," Majlesi Journal of Electrical Engineering, vol. 6, No. 4, pp. 30-38, Dec. 2012.
- [59] Lo Cheng-Hung and Huang Shi-Yu, "P-P-N Based 10T SRAM Cell for Low-Leakage and Resilient Subthreshold Operation," IEEE J. Solid-State Circuits, vol. 46, No. 3, pp. 695-704, Mar. 2011.
- [60] Moradi Farshad, Wisland Dag T., Mahmoodi Hamid, Berg Yngvar, and Cao. Tuan Vu, "New SRAM Design Using Body Bias Technique for Ultra Low Power Applications," 11th Int. Symp. 2010 IEEE Quality Electronic Design Conf., San Jose CA, pp. 468-471, 22-24 Mar. 2010.
- [61] Moradi Farshad, Wisland Dag.T., Aunet Snorre, Mahmoodi Hamid and Cao Tuan Vu, "65nm Sub-Threshold 11T-SRAM for Ultra Low Voltage Applications," *IEEE SOC Conf.*, Newport Beach CA, pp. 113-118, 17-20 Sept. 2008.
- [62] Singh Ajay Kumar, Prabhu C.M.R., Pin Soo Wei and Hou Ting Chik, "A Proposed Symmetric and Balanced 11-T SRAM Cell for lower power consumption," *IEEE TENCON Conf.*, Singapore, pp.1-4, 23-26 Jan. 2009.
- [63] Lin Sheng, Kim Yong-Bin, and Lombardi Fabrizio, "A 11-Transistor Nanoscale CMOS Memory Cell for Hardening to Soft Errors," *IEEE Trans. on Very Large Scale Integration Syst.*, vol. 19, No. 5, pp. 900-904, May. 2011.
- [64] Chiu Yi-Wei, Hu Yu-Hao, Tu Ming-Hsien, Zhao Jun-Kai, Jou Shyh-Jye and Chuang Ching-Te, "A 40 nm 0.32 V 3.5 MHz 11T Single-Ended Bit-Interleaving Subthreshold SRAM with Data-Aware Write-Assist," Int. Symp. 2013 IEEE Low Power Electronics and Design Conf., Beijing, pp. 51-56, 4-6 Sept. 2013.
- [65] Mall Ambrish, Singh Suryabhan Pratap, Mishra Manish and Srivastava Geetika, "Analysis Of 12T SRAM CELL For Low Power Application,".Available:<u>http://conference.aimt.edu.in/paper/ec%20paper/ANALYSIS%20OF%2012T%20SRAM%20CELL%20FOR%20LOW%20POWER</u> <u>%20APPLICATION.pdf</u>
- [66] Chen Hu, Jun Yang, Meng Zhang and Xiulong Wu, "A 12T subthreshold SRAM Bit-cell for Medical Device Application," Int. Cyber-Enabled Distributed Computing and Knowledge Discovery Conf., Beijing, pp. 540-543, 10-12 Oct. 2011.
- [67] Shayan Md, Singh Virendra, Singh Adit D and Fujita Masahiro, "SEU Tolerant Robust Memory Cell Design," 18th Int. Symp. 2012 IEEE On-Line Testing, Sitges, pp. 13-18, 27-29 June 2012.
- [68] Sriram K V, Ranganna Ramappa Naik, Pavan Nandan S G and Kendaganna Swamy, "Design Of Low Power 64-Bit SRAM Using 13T Cell," Int. Journal of Engineering Research & Technology, vol. 2, No. 5, pp. 1350-1352, May 2013.
- [69] Fujiwara Hidehiro, Okumura Shunsuke, Iguchi Yusuke, Noguchi Hiroki, Kawaguchi Hiroshi and Yoshimoto Masahiko, "A 7T/14T Dependable SRAM and Its Array Structure to Avoid Half Selection," 22nd Int. VLSI Design Conf., New Delhi, pp. 295-300, 5-9 Jan. 2009.
- [70] Yoshimoto Shusuke, Amashita Takuro, Okumura Shunsuke, Yamaguchi Kosuke, Yoshimoto Masahiko, and Kawaguchi Hiroshi, "Bit Error and Soft Error Hardenable 7T/14T SRAM with 150-nm FD-SOI Process," IEEE Int. Reliability Physics Symp., Monterey, pp. 3.1-3.6, 10-14 April 2011.
- [71] Nakata Yohei, Ito Yasuhiro, Sugure Yasuo, Oho Shigeru, Takeuchi Yusuke, Okumura Shunsuke, Kawaguchi Hiroshi, and Yoshimoto Masahiko, "Model-Based Fault Injection for Failure Effect Analysis-Evaluation of Dependable SRAM for Vehicle Control Units," 41th Int. Dependable Systems and Networks Workshops Conf., Hong Kong, pp. 91-96, 27-30 June 2011.
- [72] Jinwook Jung, Yohei Nakata, Shunsuke Okumura, Hiroshi Kawaguchi, and Masahiko Yoshimoto, "256-KB Associativity-Reconfigurable Cache with 7T/14T SRAM for Aggressive DVS Down to 0.57 V," 18th Int. IEEE Electronic Circuits and Systems Conf., Beirut, pp.524-527, 11-14 Dec. 2011.
- [73] Jinwook Jung, Yohei Nakata, Shunsuke Okumura, Hiroshi Kawaguchi, and Masahiko Yoshimoto, "A Variation-Aware 0.57-V Set-Associative Cache with Mixed Associativity Using 7T/14T SRAM," IEEE Faible Tension Faible Consommation, Paris, pp. 1-4, 6-8 June 2012.
- [74] Yamaguchi Kosuke, Okumura Shunsuke, Yoshimoto Masahiko, and Kawaguchi Hiroshi, "0.42-V 576-kb 0.15-μm FD-SOI SRAM with 7T/14T Bit Cells and Substrate Bias Control Circuits for Intra-Die and Inter-Die Variability Compensation,". Available : <u>http://www28.cs.kobe-u.ac.jp/pdf/EuroSOI2010_yamaguchi.pdf</u>
- [75] Nakata Yohei , Okumura Shunsuke , Kawaguchi Hiroshi , and Yoshimoto Masahiko, "0.5-V Operation Variation-Aware Word-Enhancing Cache Architecture Using 7T/14T hybrid SRAM," Int. Symp. 2010 IEEE Low Power Electronics And Design, Austin, pp. 219-224, 18-20 Aug. 2010.

ABOUT THE AUTHOR

Jyoti Yadav, pursuing M.tech from ITM University, Gurgaon in VLSI(Very Large Scale Integrated Circuits) discipline and have done B.Tech from Gurgaon College of Engineering for Women, Bilaspur in ECE(Electronics and Communication Engineering). Her main area of interest is Low - Power Digital VLSI Design and its Bio Medical applications.

Toshiyanka Goswami, student B.Tech (Completed) at ITM, Gurgaon, in the Electronics & Communication Engineering discipline. Her main area of interest is Semiconductor Materials & Device Modeling, Low-Power Digital VLSI Design, and its Multimedia applications.

Pulkit Bhatnagar, currently working as Design Engineer at STMicroelectronics Pvt. Ltd., Greater Noida, India. He has received

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518

honours degree with Gold Medal in B.Tech Electronics & Communication Engineering(ECE) from ITM University, Gurgaon. His main area of interest are Low Power VLSI Design, IO Characterization methodologies, Timing Analysis, Mixed signal design, HDL modeling, Digital design and IP Verification.

S. Birla, (IACSIT, IAENG), a Ph.D. Scholar at the UK Technical University, Dehradun (Uttarakhand) India is an Asst. Professor in the Department of Electronics & Communication Engineering, Sir Padampat Singhania University, Udaipur (Rajasthan) India. She has received her M.Tech. (VLSI Design) and B.E. (Electronics & Communication Engineering) Degrees from the University of Rajasthan, Jaipur (Rajasthan) India and MITS University, Laxmangarh, (Rajasthan) India, respectively. Her main research interests are in Low-Power VLSI Design and its Multimedia Applications, RF-SiP, and Low-Power CMOS Circuit Design.

Neeraj Kr. Shukla, (IETE, IE, IACSIT, IAENG, CSI, ISTE, VSI-India), an Associate Professor in the Department of Electrical, Electronics & Communication Engineering, and Project Manager – VLSI Design at ITM University, Gurgaon, (Haryana) India. He received his PhD from UK Technical University, Dehradun in Low-Power SRAM Design and M.Tech. (Electronics Engineering) and B.Tech. (Electronics & Telecommunication Engineering) Degrees from the J.K. Institute of Applied Physics & Technology, University of Allahabad, Allahabad (Uttar Pradesh) India in the year of 1998 and 2000, respectively. He has more than 50 Publications in the Journals and Conferences of National and International repute. His main research interests are in Low-Power Digital VLSI Design and its Multimedia Applications, Digital Hardware Design, Open Source EDA, Scripting and their role in VLSI Design, and RTL Design.

IJSER